MATH 579 Exam 5 Solutions

Part I: Prove that $p(n) \leq \frac{p(n-1)+p(n+1)}{2}$, for $n \in \mathbb{N}$.
A bit of algebra shows that the statement is equivalent to $q(n+$ $1) \geq q(n)$, for the function $q(n)=p(n)-p(n-1)$. Let's call a "nice" partition one where each part is at least 2. Thm 5.20 in the text states that $q(n)$ counts nice partitions. We now establish a bijection between nice partitions of n and certain nice partitions of $n+1$, namely the ones that have their largest part strictly bigger than the second-largest part. Given a nice partition of n, we add 1 to the largest part. This gives a nice partition of $n+1$, which is a bijection between the two sets in question. Hence $q(n+1) \geq q(n)$.
NOTE: It isn't enough to add 1 to an arbitrary part of a nice partition of n; that is not 1-1.

Part II:

1. Find a formula for $S(n, 2)$, for $n \geq 2$.

The number of surjective functions from $[n]$ to $[2]$ is $2!S(n, 2)$. There are 2^{n} functions altogether; however two are not surjective: the one that sends everything to 1 , and the one that sends everything to 2 . Solving $2^{n}-2=2 S(n, 2)$ we get $S(n, 2)=2^{n-1}-1$.
2. Find a formula for $S(n, 3)$, for $n \geq 3$.

The number of surjective functions from $[n]$ to $[3]$ is $3!S(n, 3)$. There are 3^{n} functions altogether; however three send everything to just one place, and $\binom{3}{2}\left(2^{n}-2\right)$ send everything to two places (applying the previous problem). Hence $3^{n}-3\left(2^{n}-\right.$ $2)-3=6 S(n, 3)$; solving, we get $S(n, 3)=0.5\left(3^{n-1}-2^{n}+1\right)$.
3. Find the number of compositions of 25 into 5 odd parts.

By subtracting one from each part, we get a bijection between compositions of 25 into 5 odd parts, and weak compositions of 20 ($=25-5$) into 5 even parts. By dividing each part in half, we get a bijection between weak compositions of 20 into 5 even parts, and weak compositions of 10 into 5 parts. For
this we have a formula, namely $\binom{14}{10}=1001$.
4. Prove that $p_{k}(n) \leq(n-k+1)^{k-1}$, for $1 \leq k \leq n$.

We give a process that will yield various partitions with k parts, among them all partitions of n into k parts. For each part, we select from [$1, n-k+1$], and we do this $k-1$ times. For the last part, there is at most one possible choice to make the sum n; if possible, we take it, otherwise it doesn't matter what we take. This process has $(n-k+1)^{k-1}$ outcomes. We now show that every possible partition of n into k parts occurs, by showing that each such partition must have each part at most $n-k+1$. If not, then some part must be greater than this, but the other $k-1$ parts have sum at least $k-1$, so together the sum would be greater than n.
5. Prove that $B(n) \geq\binom{ n}{2}$, for $n \geq 0$.

SOLUTION 1: Thm 5.12 states: $B(n+1)=\sum_{i}\binom{n}{i} B(i)$. We first prove the lemma that $B(n) \geq n$. We proceed by strong induction on n; for $n=0$ the claim is $0 \geq 0$, which is true. Now $B(n+1)=\sum_{i}\binom{n}{i} B(i) \geq \sum_{i \in[0, n]} 1=n+1$.
Now we use the lemma to prove our result. $B(n+1)=$ $\sum_{i}\binom{n}{i} B(i) \geq \sum_{i \in[0, n]} i=\frac{n(n+1)}{2}=\binom{n+1}{2}$, as desired.

SOLUTION 2: Induction on n; we need extra base cases because we need $n \geq 3$ in our induction: $B(0)=1 \geq 0=\binom{0}{2}$, $B(1)=1 \geq 0=\binom{1}{2}, B(2)=2 \geq 1=\binom{2}{2}$, and $B(3)=$ $3 \geq 3=\binom{3}{2}$. By Thm. 5.12, $B(n+1)=\sum_{i}\binom{n}{i} B(i) \geq=$ $\sum_{i}\binom{n}{i}\binom{i}{2} \geq\binom{ n}{2}\binom{2}{2}+\binom{n}{n}\binom{n}{2}=\frac{n(n-1)}{2}+\frac{n(n-1)}{2}=\frac{n(2 n-2)}{2} \geq$ $\frac{n(n+1)}{2}=\binom{n+1}{2}$, where we used the inductive hypothesis at the beginning and $n \geq 3$ at the end (to prove $2 n-2 \geq n+1$).

SOLUTION 3: Bell numbers are defined as $B(n)=\sum_{k} S(n, k) \geq$ $S(n, n-1)=\binom{n}{2}$ (for $n \geq 2$). For $n=0,1$, we use $B(0)=$ $1 \geq 0=\binom{0}{2}, B(1)=1 \geq 0=\binom{1}{2}$.

Exam grades: High score=104, Median score=66 (ouch!), Low score=52

